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Abstract

This report outlines the design, implementation, and performance
evaluation of our solution to the course project, which focuses on
real-time complex event processing of high-volume financial tick
data. The challenge involves efficiently computing trend indicators
and detecting patterns used by traders to guide buy/sell decisions in
financial markets. Our solution incorporates a custom windowing
mechanism that leverages event semantics to optimize the pro-
cessing of streaming data. We assess the system’s performance
by evaluating its scalability, resource utilization, and the accuracy
of trend indicators. The results highlight the effectiveness of our
approach in processing large-scale data and accurately identifying
financial patterns in real-time.
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1 Introduction

The ability to make real-time decisions from continuous streams of
financial data is crucial in today’s fast-paced stock market environ-
ment. Stock market analytics must process a vast amount of data,
including price changes and transaction volumes, within moments
to identify trends and opportunities. This fast-moving landscape
highlights the critical need for efficient data processing systems
that can effectively navigate market fluctuations and provide timely
insights.

In light of these challenges, the main goal of this project is to
design and implement an efficient trading system capable of process-
ing and analyzing high-frequency market data to support trading
decisions. The trading process consists of ingesting a large volume
of trading events, performing streaming processing, and producing
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outputs that mimic real-time trading actions such as buy, sell, or
hold decisions.

The data provided for this project is real-world market data
provided by Infront Financial Technology GmbH in 2021 which is
publicly available [9]. The data set includes one week of trading
events from November 8th to 14th, 2021 on three major exchanges
in Europe, with events record the tick data event of 5504 financial
instruments.

This project aims to develop a software/data platform solution
that addresses two primary tasks using a provided financial dataset:

Query 1: Exponential Moving Average (EMA) as quantita-
tive indicators

The first query focuses on EMA calculation, which is a crucial
financial indicator used to identify trends in stock prices over time.
The EMA is defined as follows:
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with:  |w| : window duration in minutes,
Jj : smoothing factor for EMA with j € {38,100},
s : symbol where s € S = {s1,s2,...,sn},

Closes,y, : last price event for s observed in window w;,

EMAZ,,, = 0 : initial EMA value.

The EMA calculation requires the grouping of incoming events
into 5-minute, non-overlapping windows, both by symbol and time,
to ensure accurate and timely computation of the metrics. This
approach ensures that trends and breakout patterns, such as bullish
or bearish crossovers, are detected in real-time for each symbol.

Query 2: Breakout Patterns: Crossovers

The second query builds upon the first query, which aims to de-
tect breakout patterns by analyzing the per-symbol EMA computed
at every 5-minute, non-overlapping intervals. A bullish breakout
occurs when the price rises steadily, while a bearish breakout occurs
when the price falls steadily. Identifying these trends timely allows
traders to act quickly such as buying during bullish breakouts or
selling during bearish ones to maximize profits.

e Bullish pattern can be detected and buy event must be
generated if and only if:

EMA38;,,, > EMA100,, and EMA38s,, , < EMA100s ., ,

e Bearish pattern can be detected and sell event must be
generated if and only if:

EMA38;,,, < EMA100,, and EMA38s.,, , > EMA100s ., ,

In this paper, we propose a solution to both queries and provide a
detailed explanation of the architecture and implementation of our
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trading system. The outline of the paper is as follows. Section 2 out-
lines the system architecture and presents the key logic implemen-
tation. Section 3 elaborates more on the practical implementation,
including the methodology for the hardware, programming tools,
and GUI tools used. Section 4 presents a performance evaluation
of the system, where different indicators such as its efficiency and
scalability are accessed. Finally, Section 5 offers a conclusion about
the findings and discusses potential improvements.

2 System Architecture and Logic
Implementation

This section outlines the system design and architecture of a high-
frequency trading system aimed at processing and analyzing trade
data in real-time. The system is composed of four main layers: (1)
Data Ingestion and message distribution layer that utilizes Apache
Kafka, which efficiently ingests and distributes financial tick data
from external market feeds; (2) Data Streaming and Processing layer
that utilizes Apache Flink to perform real-time stream processing,
including complex event processing, aggregation, and stateful com-
putations; (3) Data Storage layer that utilizes InfluxDB, a time-series
database designed to store the processed data and metrics for effi-
cient querying and historical analysis; and (4) Data Visualization
or Frontend layer that utilizes Grafana to visualize the data stored
in InfluxDB to provide real-time dashboards for monitoring market
conditions, trading strategies, and system health. Together, these
components enable the system to handle high-frequency data, per-
form rapid analytics, and support real-time decision-making in a
trading environment.

Our system is designed as a data-streaming application for real-
time trade data processing. We leverage the concept of data streams
in Apache Flink to process a continuous flow of financial market
data as it arrives to allow for real-time decision-making.

N Visualization
Data Ingestion Stream Data Storage Layer

Laver Processing Layer Layer

8 kafka 6)
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Figure 1: Architecture of trading system layers

Apache Flink

2.1 Data Ingestion and Message Distribution

In the data ingestion process, the system begins by establishing
a connection to the Kafka broker through the create_producer
function, which initializes a SerializingProducer in Python. This
producer is responsible for sending data to Kafka. To ensure a suc-
cessful connection to the broker, the create_producer function
retries up to five times. It configures the producer with essential
settings, including the broker’s address and the necessary serial-
izers for both the key and value. The key is serialized as a UTF-8
encoded string, while the value is serialized as a JSON object, which
represents the actual trade data to be transmitted.

After that, trade data is fetched from provided remote CSV files
which are retrieved via HTTP requests. Each CSV file contains
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financial tick data and is filtered to only retain relevant attributes
that are crucial for downstream processing and analysis. The core
attributes of interest and their descriptions are in Table 1. Further-
more, rows with missing or null values for critical fields such as
Trading time and Trading price are excluded to ensure that
only actionable data is transmitted for downstream analysis.

Table 1: Descriptions of Useful Attributes from the Dataset

Attribute Description

ID.[Exchange] | Unique identifier for the symbol, includ-
ing the trading exchange: Paris (FR),
Amsterdam (NL), or Frankfurt (ETR).

SecType Security type, represented as either
[E]quity or [I]ndex.

Last The last trade price for the symbol.

Trading Date | System date for the last received update.

Trading Time | Time of the last update (bid/ask/trade).

For every incoming event, the filtered data is ingested into the
Kafka queue. Kafka organizes data into topics that represent distinct
streams of messages. In our system, all trade data is stored in a single
topic, as all information comes from one continuous streaming
source. To support parallel processing and enhance throughput, the
topic is partitioned to allow multiple consumers to process different
subsets of data concurrently. Partitioning in our system is based
on the instrument ID to ensure that events related to the same
instrument are processed within the same partition. This approach
maintains the order of events for each instrument and supports
horizontal scaling, which allows the system to efficiently process
large volumes of data.

To ensure messages are sent reliably and no data is lost, the Kafka
producer calls pol1() function after sending each message. This
step allows Kafka to process any pending messages and address
issues such as a full queue to ensure that the system runs smoothly
by managing delays and delivering messages reliably.

2.2 Stream Processing Layer

The Stream Processing Layer is a crucial part of the trading sys-
tem and is responsible for the real-time processing of data streams
and the execution of complex event processing on trading data.
This layer utilizes Apache Flink, a distributed stream processing
framework known for its low-latency and high-throughput capabil-
ities, which makes it ideal for handling large volumes of financial
data in real-time. Flink uses operators which are modular units of
computation that sequentially apply various processing tasks on
incoming data streams. These operators are designed to support
parallel execution and allow the system to scale efficiently across
multiple nodes.

The pipeline in our system is designed around Flink’s execution
model, which operates as a directed acyclic graph (DAG), where
each node represents a specific operation. The pipeline begins by
ingesting data from data sources and passes down to consumers
for downstream processing. Then, core Flink operators perform
critical tasks, such as consuming incoming data, applying time-
based windowing for aggregation, calculating EMA, and detecting
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significant market events such as crossovers. Finally, the processed
data is written to sinks, such as time-series databases, where it is
stored for further analysis and visualization.
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Figure 2: Stream Processing Jobs

Source operator. In our system, the KafkaSource connector [3]
is used to ingest real-time trading data from Kafka into Flink. The
system ingests data by subscribing to Kafka topic where trade data
is published, serving as the first layer of data ingestion. The source is
configured to start consuming data from the earliest available offset
to ensure that no trade events are missed, even if there is a delay
in the arrival of messages. During ingestion, the source operator
uses a custom deserializer JSONValueDeserializationSchema to
convert the incoming JSON-encoded trade data into TradeData
objects. To ensure accurate event-time processing, we utilize the
watermark strategy in Flink to assign event timestamps to trade
data as it is ingested from Kafka. This approach ensures that exvents
are processed based on their actual occurrence of trading time, even
if they arrive out of order.

Listing 1: TradeData Class Definition

class TradeData {
String id;
String secType;
String lastTradePrice;
String tradingTime;
String tradingDate;

Window operator. In this system, we implement the logic for
our own 5-minute, non-overlapping window instead of using the
defined window operator in Flink. As we prioritize the correctness,
event-time semantics is leveraged instead of system-time or pro-
cessing time to reflect the actual occurrence of events to prevent
slight temporal discrepancies which can skew analytical insights.
This approach prevents minor temporal discrepancies from distort-
ing the analysis. To achieve this, we utilize a monotonous event
timestamp watermark strategy, where each incoming event has
a timestamp that is always greater than or equal to the previous
event, as seen in the data stream source.

The windowing mechanism leverages Flink’s event-time timer
service to effectively manage the lifecycle of each window. When a
new event arrives, the system compares its timestamp with the start
time of a current window. For example, if an event’s timestamp
is 00:03:00, it is assigned to the window from 00:00:00 to 00:05:00.
Upon detecting the arrival of a new event and determining that
it falls outside the current time window, the system registers an
event-time timer to fire at the window’s closing time (e.g., 00:05:00
for a 5-minute window). When this timer triggers, it indicates that
the window has reached its end, and it is time to calculate EMAs
and generate output for that window.

One of the key strengths of this design is its ability to handle
late and out-of-order events, which are common in distributed
systems due to network delays or unsynchronized sources. To en-
sure completeness, the window remains open until an event with a
timestamp beyond the window’s closing time is encountered, pre-
venting premature closure. While this approach improves analytical
accuracy and data integrity by ensuring that all relevant events are
included in the window, it can also introduce processing latency
and increased resource consumption, especially under high data
volumes. This represents a trade-off between prioritizing accuracy
and completeness of the data over real-time performance, a crucial
consideration in financial applications.

EMA calculator and crossover detections operator. The sys-
tem is designed to process real-time financial data streams using
stateful stream processing within the Apache Flink framework.
Specifically, the EMA is calculated for each stock symbol uses
prior EMA values to ensure accurate and continuous computa-
tion. To achieve this, the system employs Flink’s KeyBy [6] and
KeyedProcessFunction [7].

Initially, the KeyBy operator is applied to the input data stream
to partition the stream based on unique stock symbols. This ensures
that the events for each stock symbol are processed independently.
Subsequently, the EMA values are calculated separately for each
stock symbol using the EMACalculationProcessFunction, a cus-
tom implementation of the KeyedProcessFunction in Flink.

Within the EMACalculationProcessFunction, ValueState in
Flink [8] is utilized to maintain key components, which includes
the last observed trade price, the previous EMA values, and the
current window state. These states are essential for recursive EMA
calculations, which use the EMA values from previous window
combined with the latest trade price from the current window.
The ValueState also tracks the start time of each time window to
ensure only the relevant data contributes to EMA computations.

This function leverages Flink’s design for efficient state updates
as new events arrive. Timers are employed to manage time windows



and trigger actions at the end of each window. When a timer fires,
it initiates the EMA computation and evaluates crossover patterns
simultaneously. Based on these patterns, buy or sell advisories are
generated. After this process is done, TradingOutput objects for
each stock symbol is produced, which encapsulates the calculated
EMA values and any detected breakout patterns, such as bullish
or bearish crossovers, along with the corresponding advisories for
trading actions.

Listing 2: TradingOutput Class Definition

class TradingOutput {
private String symbol;
private String tradingTime;
private String tradingDate;
private double lastTradePrice;
private double ema38;
private double emal00;
private double prevEma38;
private double prevEmal00;
private Integer eventCode;
private String advisoryReason;
//Bullish Crossover, Bearish Crossover

Sink operator. In Flink, a data sink serves as the final des-
tination for a data stream, where the processed data is stored or
forwarded. Sinks are commonly configured to connect with external
systems like databases or streaming platforms. Flink utilizes its con-
nectors to efficiently transfer data from the stream to these target
systems to complete the data processing pipeline [4]. In our system,
the TradingOutput stream is directed to InfluxDB, a time-series
database, as the sink. This integration facilitates high-performance
storage and enables downstream processes like analytics, visualiza-
tion, and alert generation using tools such as Grafana.

3 Data Storage and Visualization Layer

In our system, the measurement or table name is trading_db,
where the trading outputs for all symbols are stored as Points. Each
Point consists of fields representing various trade metrics, such as
the last trade price, EMA values, and advisory reason. The tags is
the stock symbol identifier, which allows for efficient filtering and
querying of data based on the stock symbol.

Once the data is stored in InfluxDB, we integrate with Grafana,
an open-source platform for visualizing time series analytics and
monitoring, to retrieve and display the trade data [10]. Grafana
is chosen as the visualization tool because it easily connects to
InfluxDB through data connectors, offers real-time, customizable
dashboards, interactive features, and powerful filtering options to
focus on specific metrics or trades for efficient monitoring and
analysis. Additionally, we implement alerts in Grafana to notify
users of buy and sell advisories when a crossover is detected. These
alerts are sent to Discord to provide real-time updates and enhance
the responsiveness of the trading system. The Discord channel can
be joined via this link [1].
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Figure 3: Snapshot of selected stock symbols on 10/11/2021
in Grafana dashboard

4 Implementation

The details of the logic implementation of the code are already
included in Section 2. This section focuses on the practical aspects of
the system implementation, which covers the setup, hardware/cloud
services, programming tools, and GUI tools utilized in the project.

The implementation utilizes Python on the Kafka producer side
and Java (OpenJDK11) for Flink processing. On the producer side,
Python is used to interact with the Kafka messaging system, ingest-
ing financial tick data, and publishing it to Kafka topic. Python is
chosen due to its simplicity and robust library ecosystem for man-
aging data ingestion and preprocessing. Additionally, Zookeeper is
utilized for managing Kafka’s distributed system to ensure reliable
coordination and synchronization of Kafka brokers.

On the consumer side, Apache Flink is implemented using Java
to perform real-time stream processing. Java is chosen for its tight
integration with Flink, which provides high performance and the
ability to leverage Flink’s extensive APIs for stateful processing.
Flink is configured with 4 task slots to enable parallel execution of
tasks to maximize throughput and efficiency. In this setup, Flink
consumes data from Kafka, computes EMA indicators, detects break-
out patterns, and generates trading advisories. This combination
of Python for data ingestion and Java for stream processing en-
sures a flexible, efficient, and scalable real-time trading system. To
enable rapid deployment and scalability of our applications, we
utilize Docker Compose [2] to orchestrate Kafka, Zookeeper, Flink,
InfluxDB, and Grafana within containers. Our repository can be
retrieved here [11].

5 Performance Evaluation

For this system, correctness was verified through a structured test-
ing approach using a toy dataset. This dataset was constructed with
carefully selected trade events, including timestamps, trade prices,
and predefined expected values for EMA38 and EMA100 calcula-
tions. The EMACalculationProcessFunction was applied to the
toy dataset, and its output was systematically compared against
the known correct values.

In our experiment to assess the scalability of Flink, we compared
the CPU and memory usage between two configurations: 1 task
slot and 4 task slots in TaskManager for each job in Flink. With 1
task slot, Flink could only execute one task at a time and leads to
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underutilization of CPU resources. Since only a single task—such as
the Kafka source or one downstream operator—was running at any
given moment, the CPU load remained relatively low and less con-
sistent, with idle time between tasks. In contrast, with 4 task slots,
Flink could execute four tasks in parallel, which significantly in-
creased CPU usage. By allowing multiple tasks to run concurrently,
more CPU resources were required to handle the higher throughput
and parallelism. However, it resulted in better overall performance,
with faster data processing and reduced latency. Therefore, while
CPU usage was higher with 4 task slots, the trade-off was improved
resource utilization and better scalability.

6 Conclusion

In conclusion, we have presented the architecture and implementa-
tion of a high-frequency trading system designed for real-time fi-
nancial data processing and decision-making. By leveraging Apache
Kafka, Apache Flink, InfluxDB, and Grafana, we have built a robust,
scalable, and efficient solution capable of handling large volumes of
financial data, performing complex calculations like EMA, and de-
tecting breakout patterns to generate buy and sell advisory events.

For further improvement, if we had more time, we would explore
the integration of additional metric reporters [5] from FLink with
InfluxDB to gain deeper insights into the system’s performance. By

capturing detailed metrics related to task execution, resource utiliza-
tion, and processing times, we could identify potential bottlenecks
and areas for optimization.
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